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We propose a discrete lattice version of the Fokker-Planck kinetic equation in close analogy with the
lattice-Boltzmann scheme. Our work extends an earlier one-dimensional formulation to arbitrary spatial di-
mension D. A generalized Hermite-Gauss procedure is used to construct a discretized kinetic equation and a
Chapman-Enskog expansion is applied to adapt the scheme so as to correctly reproduce the macroscopic
continuum equations. The linear stability of the algorithm with respect to the finite time step At is characterized
by the eigenvalues of the collision matrix. A heuristic second-order algorithm in At is applied to investigate the
time evolution of the distribution function of simple model systems, and compared to known analytical
solutions. Preliminary investigations of sedimenting Brownian particles subjected to an orthogonal centrifugal
force illustrate the numerical efficiency of the Lattice-Fokker-Planck algorithm to simulate nontrivial situa-
tions. Interactions between Brownian particles may be accounted for by adding a standard Bhatnagar-Gross-

Krook collision operator to the discretized Fokker-Planck kernel.
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I. INTRODUCTION

Kinetic equations are well-established mathematical mod-
els for investigating the behavior out of equilibrium of fluids,
and their relaxation toward thermodynamic equilibrium, at a
molecular or coarse-grained, mesoscopic level [1]. They
govern the time evolution of the single-particle distribution
function f(x,v;f) in the (2 X D)-dimensional space of posi-
tion x and velocity v. This evolution is expressed in terms of
“free flow,” under the action of an external or self-consistent

force field, and of the action of a “collision” operator é[f],
which accounts for the interactions between particles, or
their coupling to a continuous medium. The exact form of

the operator C involves a hierarchy of equations for the
higher-order distribution functions (the Bugoliubov-Born-
Green-Kirkwood-Yvon BBGKY hierarchy [2]), so that a
closed equation for f cannot be obtained. Depending on the
physical problem at hand, approximate closures have been
devised which lead to various standard kinetic equations.
Thus, if particle interactions are only considered at a

mean-field level, through a self-consistent force field, C=0
and the standard Vlasov equation of plasma physics results
[3]. In dilute gases of molecules interacting through short-
range forces, one may make the assumption of strictly bi-
nary, uncorrelated collisions, which leads to the nonlinear
Boltzmann collision operator involving the molecular scat-
tering cross section [1]. The Boltzmann equation has been
widely used for a systematic investigation of transport phe-
nomena in gases [4], while its generalization by Enskog,
which accounts for static correlations, allows such calcula-
tions to be extended to dense fluids [1].

Following the idea that the molecular details included in
the Boltzmann and Enskog collision operators are not likely
to have a strong influence on the experimentally measured
macroscopic properties of fluids, Bhatnagar, Gross, and
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Krook (BGK) proposed a highly simplified, phenomenologi-
cal version of the collision operator describing the relaxation
of the distribution function toward local Maxwellian equilib-
rium on a single time scale 7. The BGK operator [5] still
conserves mass, momentum, and kinetic energy, and by
properly adjusting the relaxation time 7, it goes beyond the
strictly binary collision assumption of the Boltzmann equa-
tion and hence allows its phenomenological extension to
dense fluids [6]. The combination of the BGK kernel with
discretized lattice versions of kinetic equations, globally re-
ferred to as the lattice-Boltzmann (LB) method [6—8] has
proved to be a powerful tool for the study of laminar or
turbulent fluid flow and transport. The assumption that fluid
particles can be restricted to have only a small, fixed number
of velocities v reduces the computational problem consider-
ably compared to corresponding finite difference schemes.
The numerical parameters of the lattice-BGK model can be
adjusted to reproduce the correct Navier-Stokes behavior in
the double limit of small Knudsen and Mach numbers (quasi-
incompressible flows). Over the last decade the LB method
has increased in popularity as successful applications have
been repeatedly reported in numerical simulations of large-
scale hydrodynamic flows [9], complex fluids under shear
and in porous media [10], self-assembly into mesophases
[11], ion transport in bulk solutions [12] and in nanochannels
[13], liquid crystal rheology [14], and colloidal suspensions
[15,16].

The latter systems generally involve a considerable sepa-
ration in size and time scales as epitomized by the classic
concept of Brownian motion. This is generally the case of
two-component systems involving a molecular-scale solvent
and larger, heavier solutes. The natural kinetic theory frame-
work to handle such highly asymmetric situations is the
Fokker-Planck (or Kramers) equation [17], which adopts an
effective, one-component description of the solute, whereby
the solvent and the boundaries are modeled implicitly, as
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sources of friction and random forces. The collision operator

é[f] may then be constructed as the sum of a Fokker-Planck
(FP) operator, which accounts for the coupling between the
solute and the (continuous) solvent and between the solute
and the confining surfaces, and of a BGK operator to model
solute-solute interactions. The corresponding lattice Fokker-
Planck (LFP) equation was recently put forward by some of
us [18], and applied to a simple one-dimensional problem of
electrical conduction [19]. The same strategy may also apply
to dilute solutions of microscopic solutes, like ions, in a sol-
vent and provide a numerically efficient alternative to
Brownian dynamics [20], or to a multicomponent LB scheme
involving coupled equations for the solute and solvent distri-
bution functions [21-23].

The main objective of the present paper is to extend the
LFP formulation to the D-dimensional case, and to develop
an efficient and stable numerical scheme for its solution. This
should provide an operational tool to tackle nonequilibrium
problems in the field of dispersions and complex fluids in-
volving multiple length and time scales.

The paper is organized as follows. The lattice discretiza-
tion of the FP equation is carried out in Sec. II. Using a
truncated expansion of the distribution function f(x,v;z) in

generalized Hermite polynomials, the collision operator é‘[f]
is expressed in terms of the moments of f, which can be
computed by appropriate quadratures. This completely de-
fines the LFP numerical solution scheme. In Sec. III we ad-
dress the stability of such a scheme. Since the evolution of
the discretized distribution functions can be rewritten as a
linear iteration, studying the stability amounts to analyzing
the spectrum of the transformation. A standard Chapman-
Enskog expansion of the LFP equation is carried out in Sec.
IV to ascertain the reproducibility of the continuous macro-
scopic equations. The practical implementation of a second-
order algorithm in the discrete time step At is proposed in
Sec. V, while numerical results are presented in Sec. VI
Concluding remarks are contained in Sec. VII, and math-
ematical issues are detailed in the appendices.

II. THE LATTICE FOKKER-PLANCK EQUATION

Since the implementation of the BGK collision operator
in the LB method is well documented in the literature [6,8],
we restrict the following to the Fokker-Planck operator. The
standard FP Kinetic equation in D dimensions reads [17]

(0, + V0o + abd, )f = CTA] = ¥, o+ v7d, )f (1)

where x, and v, are the Cartesian components of the
D-dimensional position and velocity vectors x and v, d,, and
a, are the corresponding gradient operators, and ag are the
components of the acceleration due to an external force field
maF acting on the solute particles of mass m. Here and in the
following greek indices run from 1 to D and we adopt
Einstein’s summation convention over repeated indices. The
left-hand side is a conventional streaming operator, while the
right-hand side is a Fokker-Planck operator with constant
friction coefficient vy and thermal velocity U2T: kgT/m, where
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kg is the Boltzmann constant and 7 the temperature of the
system.

Equation (1) governs the approximate time evolution of
the distribution function f(x,v;f) of a microscopic or meso-
scopic solute. The friction coefficient v, which sets a natural
inverse time scale, accounts for the coupling between the
solute and the majority solvent particles, and for the friction
force exerted by any confining surfaces. The force maf(x,?)
acting on a solute particle at x, at time ¢ may be an external
driving force, like a dc or ac electric field, or a self-consistent
force due to the combined action of all other solute particles
like the self-consistent electric field appearing in the Vlasov
kinetic equation for plasmas, or a drag force due to solute
flow. In the latter self-consistent case, the force depends on
the local value of the distribution function f, so that the FP
equation (1) is intrinsically nonlinear. In the present paper
we focus on the simpler linear situation of an external force
field to investigate solute diffusion and drift, but much of the
formal development of subsequent sections remains valid in
the nonlinear case.

In the lattice-Boltzmann method the continuous velocity v
is replaced by a finite set of discrete velocities v;, i
=1,...,b, which are vectors on a lattice. Accordingly, the
distribution function f(x,v;f) is replaced by b functions
gi(x;0) o f(x,v;;1), and Eq. (1) by b equations for each of the
g;- In these equations the v; are no longer variables, but fixed
parameters. The positions x are discrete points on the lattice,
whose size and boundaries are modeled on the geometry of
the physical problem. Completing the discretization, time ¢ is
considered to evolve in multiples of a discrete step At. In
order to derive the discrete equations, we define the external
force operator

Cf=-dko, f (2)
and rewrite Eq. (1) as
(d+vad)f = CIf] (3)

with C[f]=CPP[f]+C*f]. On the left-hand side we now
have a free-particle streaming operator, which can be easily
discretized, as we will show in the next section. The non-

trivial task is to find the correct lattice collision operator L

corresponding to the continuous operator C. In the BGK
case, a systematic procedure has been devised in [24-26]
based on Gauss-Hermite quadratures. The procedure is in-
spired by the pioneering ideas by Grad [27] to solve the
Boltzmann equation using the so-called 13-moment system,
and has become a useful tool in discrete models of the
Boltzmann equation [28,29]. It relies on the fact that prod-
ucts of a Gaussian with Hermite polynomials are eigenfunc-
tions of the BGK operator. We prove in the following that the
Gauss-Hermite strategy also allows one to discretize the
Fokker-Planck kinetic equation because BGK and FP opera-
tors share the same set of eigenfunctions. Indeed they are just
different limits of a more general integral operator, devised
by Skinner and Wolynes [30]. The additional force term

present in C[f] is not diagonal in this basis set, but it has
nevertheless a computationally convenient form. Although
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the methodology is not new, its application in the FP context
is the purpose of the present work. In order to provide a
comprehensive and self-contained treatment we give full
mathematical details in the following.

The discretization is best carried out by expanding the
continuous distribution function f(x,v;f) over a basis set of
D-dimensional Hermite polynomial tensors Hg)(v) (see Ap-
pendix A), according to )

o

fxvin) = 0(V) 2 5 FUxOHD(v) 4)
1=0 UTl!
where the subscript ¢ is an abbreviation for «, ..., q, the
product denotes contraction on all / indices, and
e—vz/(2va)
o(V)="—555 &)
@md)P"

is a Gaussian weight function, with v¥=v-v. The expansion
coefficients are given by

F(x,1) = f av f(x,vityH(v) (©)

where the velocity integrals are always taken over R”. Since

(v) involve polynomials of order [/, the F, ! are linear
comblnatlons of the moments of f,
M;m)(x,t)=fdvf(x,v;t)val---vam, (7)

with m=1.

Inserting the expansion (4) in the kinetic equation (3), we
could project the equation on the basis set and derive a hier-
archy of differential equations for the coefficients. However,
that would simply transform the problem into another of
equivalent complexity. Here we aim instead at a different
approach. By means of the Hermite expansion we can ex-
press the right-hand side of (3) as a function of the moments
of f. Using a lattice-discretized distribution function we can
compute these moments by a suitable quadrature. The expan-
sion involves an infinite number of moments and clearly we
have to truncate it at a certain order K. We hence assume that

FO(x,)=0 ifI>K (8)

and rewrite f as a distribution function that lies entirely in
the subspace of Hermite polynomials up to order K

fx,vit) = w(V)E

IOT

”(XJ)HS)(V)- )

This assumption is expected to be valid at least for situations
close to equilibrium. Using the properties of CFP [f] and
C*[f] detailed in Appendix B, we also find that the outcome
of C[f]=CFP[£]+C*[f] lies entirely in this subspace.

The key idea of the lattice-Boltzmann method is that in
order to compute the velocity integrals in Eq. (7), only a

finite set of velocities is needed. Specifically, we want to
compute D-dimensional integrals as discretized sums over a
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fixed set of points. We assume there exists a set of vectors
\S RP, and a set of real numbers w;, with i=1,...,b, such
that if p(v) is a polynomial of degree not greater than 2K, the
following formula is valid:

b
f dv o(vV)p(v) = 2 wp(v). (10)

i=1

The above equation is then called a quadrature of degree 2K,
and the v; and w;, the nodes and weights of the quadrature.

Because of the truncated expansion Eq. (9), f/ w is a poly-
nomial of order K at most. Since we requested a quadrature
of degree 2K we can now compute the moments of f up to
order K, according to

fdvf(x,v;t)va1 ---vam—f E ;f(X v; l)Ua]"' a,

_E fx V,,t) '
S () T
b
izlgivml'“vmm (11)

where we defined g,(x;1)=w;f(x,v;;t)/ w(v;) and the formula
is valid for m<K.

The choice of K is dictated by the application. In practice
one is not interested in knowing f itself, but rather in com-
puting its moments, which correspond to macroscopic ob-
servables. Momentum and energy equations involve mo-
ments up to second and third order, respectively.
Consequently it is necessary to require K=2 or K=3. The
lower-order moments are labeled by conventional names and
the quadratures read

b
piM(°)=def(x,v;t)=Egi, (12a)
i=1

b
Jo= puaﬁM(a')=Jde(X,v;t)va=Egiv,-a, (12b)
i=1
b
Pup= Mz)_fde(X,V;l)UaUBZE8iUian,3, (12¢)
i=1

and if K=3 we can also compute exactly
b

Mg, = f AV (X V1)V 0 0 = 2 8iaDighiy-
i=1

Qan

(12d)

Finding the optimal set {v;,w;} in terms of a minimum
number of nodes for a given degree of accuracy is in general
an unsolved problem [31]. However, as far as the solutions
of kinetic equations are concerned, it is also important that
the v; be vectors of a regular lattice in x space. Then for the
cases of physical interest (D=1,2,3 and K=2,3) a number
of possibilities exist with different »’s. The thermal velocity
vy can also become a free parameter to adjust the quadra-
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tures. Some resulting models that are used in practice can be
found for example in [6].

We now have the prerequisites to develop a computational
scheme for the Fokker-Planck kinetic equation. Consider the
distribution function f evaluated at discrete lattice points x
and at a finite set of b velocities v; that are also lattice vec-
tors. Multiplying both sides of Eq. (3) by w;/ w(v;) and using

the expansion (9) not on f but on the function é[f], we can
write

K
0i8i+ Vinla8i = W; E C(Z)H(l)(v ) (13)
=0 Tl'
where now
Y= f av ClfTHY(v). (14)

The idea of using the postcollision function (| [f] instead of f
was introduced already in [32] to solve the Boltzmann equa-
tion with a ten-moment system leading to alternative Grad
equations. Finite difference time discretization to first order
[26] then leads to

K
= Atw; >, —C“)H(”( )

IOT

gi(x + v;Art + Ar) — gi(x;1)

(15)

which defines the lattice Fokker-Planck equation.
The above expression must be supplemented with an op-
erational expression for the Hermite coefficients C(of) of C[f].

Using the results of Appendix B, they can be expressed as
functions of the Hermite coefficient F ) of f. We can then

write C(l C(l) FP+C D.ext , where
1),FP l
C(g) =_71F<g), (16a)
cYer = alF(sz” ot ralFOY L (16b)

and Cg» “'=0. The F, ) are related in turn to the moments
M, O of f by the definition of the Hermite polynomials. For
K= < 3 they read

FO = P, (17a)

Fh=y,, (17b)

F%: Pug— v%péaﬁ (17¢)
Fogy=Qapy=Vildaply + duyl g+ Opy]a).  (17d)

where p,J,, etc. are related to the g; via the quadratures Eqgs.
(12).

Putting together Egs. (15)—(17) and (12), we have then a
complete numerical scheme to solve the continuous equation
(3). More precisely, we have different schemes according to
the choice of the order K in the Hermite expansion, which
allow corresponding exact computation of the moments of f
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up to the same order. As an example we can write explicitly
to second order (K=2)

gi(x+v,Ar;t+ Ar) — gi(x;1) = Atli[g,] (18a)

where the lattice collision operator L reads

+[ 27’(Paﬁ UTP ﬁ)+a§~’/3

i[gi]=w,~{[ Yo+ abpl
T

2
UDia—U20
+ af;,a]vlavléz Ur aé’} ) (18b)

4
2v7
Clearly, given the functions g,(x;f) at time ¢, one can com-

pute the moments p,J,,P,s and hence L[g;]. The gi(x;t
+Ar¢) at time 7+ At are then obtained using the left-hand side
of Eq. (18a). Note that in this way we are not calculating the
distribution function f but rather g;=w;f(x,v;;t)/ w(v;). How-
ever, the quantities of interest to be sampled are the moments
of f, corresponding to hydrodynamic observables. By con-
struction the quadratures provide them straightforwardly via
Eqgs. (12).

The scheme derived here defines an algorithm for the nu-
merical solution of Eq. (3). In the case D=1, greek subscripts
are no longer necessary, expressions (16) reduce to CV
=—yIF+a"IF*Y, and Egs. (17) simplify as well. These
expressions coincide with those used in [18] for a second-
order (K=2) scheme. In [18] the discrete lattice equations
are tested against the continuous equation only numerically.
In this paper we improve the analysis of the scheme and
address also analytically its stability and the reproducibility
of the continuous equation (3). A discussion of the computa-
tional algorithm is then given in Sec. V.

III. STABILITY ANALYSIS

In the following we show that Eq. (15) can be recast in
the linear form

gi' = E éijgj (19)
J

where g/ =g,(x+Vv,At;1+Ar)—g;(x;1) defines a vector g’, g;
=g,(x,1) a vector g, and 51',' the so-called collision matrix C

[6,33,34]. For a given lattice geometry, C is a constant ma-
trix that depends only on the operator parameters y,a~. In
particular we consider isothermal models, where vy is ﬁxed
and we make the relatively strong assumption that the exter-
nal acceleration field aZ does not depend self-consistently on
the distribution functions g;. The latter case will be examined
in a subsequent publication.

The aim of this section is to check for which range of
these parameters the scheme embodied in Eq. (19) is stable,
where stability means that upon iterating the scheme, the
distribution functions g;(x;¢) stay finite at any value of x and
t. The task is significantly eased by the fact that we do not
have to first linearize the scheme, as in the usual Von Neu-
mann stability analysis [8]. By standard arguments in lattice-
Boltzmann theory [7] the stability condition reads
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[1+NO)| <1 (20)

where \(C) is any eigenvalue of C. We remark that Eq. (20)
is a very simple condition valid globally, independently of
the initial distributions g,(x;0) or the boundary geometry.
Such a feature is an attractive consequence of the linearity of
the scheme, while much more complicated stability analyses
which depend on the local g,(x;0) are required in the full
self-consistent LB method [35].

Thanks to Eq. (20) the stability analysis reduces to the
spectral analysis of C. We proceed now to first identify this
matrix, and then compute its spectrum using the results of
the previous section.

As a starting point, we rewrite Eq. (15) as

"1
glAr=w; >, = COHD(v) (21)
=1 NZ

where temporarily in this section we set aside the tensorial
notation and enumerate all the terms of the sum (including
the tensorial contraction) simply from 1 to n. As a result, the
index [ here represents a shorthand notation for the previous
set of indices /a. Accordingly we redefine the normalization
factors as just le, since it is not necessary to know their
detailed form. We wish then to express Eq. (21) in the matrix
form of Eq. (19) using the fact that the dependence on
gi=wifi/ o(v,) is inside CV=[dv C[FTHD(v).

The first step is then to use the quadratures to write
(see Appendix A)

2 wH (v )H™ (V) = 8,V . (22)

Defining the matrix H;=H"(v,) (which contains b rows
times n columns), Eq. (22) is rewritten in matrix form

H'WH = N? (23)

where H is the transpose of H, W;;=w;9; is a b X b diago-
nal matrix, and N>= N, Oy isannXn d1agonal matrix. Stated
otherwise H'(WHN=?)=I, i.e., WHN? is a right-inverse
(HT)""R of HT.

As a second step, we consider the operator é and we
apply it to f expanded in its Hermite representation,

Cof=Co (w(v)E ]%F(Z)H(l)(v))

=1 4V]

(l)(v)> "
- (w(V) N2 (24)

where F'=[dv fH"(v). Upon projecting along H"(v) we
get
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cm = f dvH"W)[Cof1=2, {f dv H™(v)C
=1

(w(v) ') )} FO_S ¢ p, (25)
N; =1

l

where the quantity in large square brackets defines the ele-
ments C,,; of an n X n matrix C.
The third step is to express F in terms of the g;:

FO = f v FHO(v) = J v w(v)ﬁ?-{(’)(v)

E ()H“(v) Egl Vi), (26)

where the last term can be rewritten in matrix notation as
H'g.

Combining the results obtained in the above three steps
we can write (21) in matrix form

g'/At=WHNCH'g (27)

which identifies the collision matrix
C/At=WHN2CH" = (H")""RcHT. (28)

For clarity we can equivalently write HZ,,E,,,,:AtC,mH,{b
where the matrix dimensions are indicated by explicit sub-
scripts.

Equation (28) is a representation of the collision matrix

that allows its spectral analysis. Indeed the spectrum of C is
directly connected to that of C. In the square case n=b the
two matrices are similar and have the same spectrum. In the
general rectangular case, since b=n, the spectrum of C is

contained in the spectrum of C [an eigenvector of C being
just (HT)"""®y where v is an eigenvector of C]. The addi-
tional b—n eigenvalues are just 0.

We have therefore reduced the problem to the computa-
tion of the spectrum of C. We can deduce an explicit repre-
sentation of this matrix using relations (16) and the defining
equation (25). The matrix C reads

[ o \

(a®)

-

(a¥)

(29)
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where (a%) contains only a” components, the square matrices
are diagonal, and all the remaining elements are zero. The

Fokker-Planck operator fills the diagonal while Cex occupies
the lower diagonal part. The resulting matrix is triangular
and the eigenvalues are just given by the diagonal elements,
independently of the off-diagonal ones, i.e.,

Ne=—17vk, k=0,....K. (30)

Consequently, the collision matrix C has eigenvalues
N Az Going back to conditions (20), the most stringent one
is for k=K and reads

0<yAt<2/K (31)

which in the case of the K=2 scheme of Eq. (18) reduces to
0<yAt<1. These inequalities completely identify the range
of model parameters for which the scheme proposed in Sec.
IT does not lead to an unbounded growth of the distribution
functions with time. Note that the stability requirement im-
poses conditions only on the parameter y independently of
the external field a”. This is due to the initial assumption that
the field does not depend on the g;. We expect this conclu-
sion not to be valid numerically, as very strong fields would
lead to high-Mach-number regimes where lattice-Boltzmann
schemes are known to break down [6] (with the possible
exception of entropic schemes [28,29]). To this purpose we
validate the range of applicability derived in this section with
numerical simulations in Sec. VI. Inclusion of self-consistent
force fields, that depend for example on the local density Eq.
(12a), would require a more careful analysis [35].

IV. CHAPMAN-ENSKOG EXPANSION

A kinetic equation describes a system at the microscopic
level of the distribution function f(x,v;7). Define the Knud-
sen number € as the ratio of the mean distance between two
successive particle collisions and the characteristic spatial
scale of the system (e.g., radius of an obstacle in a flow). If
this number is very small the details of particle collisions can
be neglected and the system can be regarded as a continuum.
Using the Knudsen number as an expansion parameter,
Chapman and Enskog were able to derive from the Boltz-
mann equation the evolution of the hydrodynamic variables
(corresponding to the lower order moments of f) in the con-
tinuum limit, thus reproducing the macroscopic Navier-
Stokes equations [ 1]. Eventually, the expansion has also been
used in the context of the LB method to derive the macro-
scopic equations obeyed by lattice-Boltzmann models. The
fundamental hydrodynamic equations were recovered consis-
tently [36].

The Chapman-Enskog procedure is not restricted to the
Boltzmann and lattice-Boltzmann equations. In this section
we apply it to the continuous Fokker-Planck kinetic equation
(3) and to the second-order (K=2) lattice scheme of Eq. (18).
We can then check if the same macroscopic equations for the
first moments are reproduced.

In the continuous case the expansion is straightforward.
Indeed one can avoid it completely and obtain the equations
for the macroscopic variables by just multiplying Eq. (3) by

PHYSICAL REVIEW E 73, 066707 (2006)

Vg, " 'Uq, and integrating over velocity space. In general at
order m, one obtains the time derivative of the mth moment
plus the divergence of its flux on the left-hand side. On the

right-hand side the moments of é‘[f] can be calculated using
the Hermite expansion and the properties of Hermite poly-
nomials, as was done in the previous section to compute the
collision matrix. Explicitly, up to order 1, the result is

Ap+9d =0, (32a)

ol o+ IgP o= — Y(J o = pus) (32b)

where we have introduced the external velocity ut=a%/vy.
The first is the continuity equation; the second gives the
evolution of the first moment J,, but involves also the un-
known second moment P,z Indeed this procedure simply
generates a nonclosed hierarchy of equations for the mo-
ments of f. However, we are not interested here in reproduc-
ing the Navier-Stokes equations, nor are we interested in
obtaining a closed set of equations. What we wish to check
in the following is whether the lattice scheme of Sec. II
actually reproduces the same hierarchy of equations of the
continuous case.

In the discrete case we must make use of the complete
Chapman-Enskog expansion. To make it more transparent
we have divided this derivation into subsections.

A. Preliminaries

The macroscopic phenomena that we aim at reproducing
can occur on different time and spatial scales. For example,
there may be elastic effects, such as sound propagation, on
short time scales, and viscous effects, such as damping, on
longer time scales. The idea of the Chapman-Enskog expan-
sion is that assuming such a separation of scales, these phe-
nomena can be analyzed with multiscale asymptotic methods
[37]. We hence expand the populations g; and the spatial and
time derivatives in powers of the Knudsen number parameter
€. The hydrodynamic limit corresponds to €<<1. In this limit,
noticeable spatial variations take place typically over dis-
tances of order € !. It is hence natural to introduce a macro-
scopic space variable defined as x;=ex. Since we expect
both propagation and diffusion phenomena, we must expand
up to second order in time, because in diffusion processes
inhomogeneities at the €' space scale will relax on the €
time scale. Therefore we introduce two time variables t,
=et and tzzezt. As usual in multiscale methods, we then
write

gi=g" +egtV + &, (33)
0, = e&ﬁl) + 62(752), (34)
9= €d). (35)

Equation (33) defines a corresponding expansion of the
moments of g as
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p: E gi = 2 [gfo) =+ fgl(l) + ggfz)] = p(()) + €p<l) + 62[)(2)
i i

(36)

and similarly for J,, P,z For convenience we also rewrite
the lattice collision operator Eq. (18b) as

2
— vTaa
4
2vy

Uial;

~ — Uiy _
L[gz] == ’yjaywi - Zypaﬁ wi (37)
T

where

Jai‘]a_pui’ (38)

_ 1

Paﬂ == Paﬁ_ U%péaﬁ— E(Mi]ﬁ'F Mg]a). (39)
Since J,, and 13043 depend linearly on the moments p, J,,, P o,
we can write for them an expansion similar to Eq. (36);

j(O) (1)

namely, J,, +el, +ezj(a2) and analogously for 13043.

B. Expansion details

The first step is to apply the expansions defined in the
previous subsection to both sides of Eq. (18). On the left-
hand side, we first manipulate the streaming operator as
usual in Chapman-Enskog expansions for lattice-Boltzmann
models [8]. Since the scale expansion parameter € is small,
the populations vary little from one node the next. We can
approximate the population g;(x+v;Af;7+Ar) by its Taylor
expansion around g;(x;7), and write up to second order in At

At
gi(X + VlAt,t + At) - gl(X,t) = At(&l + viaﬁa+ 7(6@ + Ul‘a(?a,)

Using next Egs. (40) and (33)—(35), the streaming term

lgi(x+V;Ar;1+Ar)—g(x;1)]/ At can be expanded in powers
of € as

order €, 0, (41)

order €', [d" +v,,0"1g?, (42)
order €, [&m + v,a&(l)]g(1> (a + —(ﬁ(l) + vm&(l))

X (" + viﬁag‘)))gf-‘”. (43)

On the right-hand side, in the case of the lattice collision
operator, the expansion acts order by order on the moments
and we can write

ile]=L0+ &+ O (44)

where
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2
2W _2 P(k)vzavzﬁ UT(SaBW

LA(-k =- yJ 4 ;
vr 2v '

(45)
for k=0, 1, and 2.

The second step is to equate corresponding orders of the
expansion. Thus we obtain to order €

2
v,V U790,
0=- 'yJo?) mw 2'yP (0) Ziaip~ “Tap 4 L aﬂw,, (46)
vT 2v
to order €'
)Vial v 6
é(l)g, )+v,-ar9(1)g,(0) J(1 w -2 P(1 ZiaZip Z17ap ) I w;,
vT 2uy
(47)

and to order € the equation can be rewritten more conve-
niently as

At
AVg" + 0 viagl” + 078"+ LA 8 + g vipg”)
+ &S)(agl)viagz('()) +7 l)vlavlﬁgzo))]
Vig— (5 o
'yJ(z) mw 2'yP(2) o w;. (48)
UT 21}T

The third step is to compute the moment equations asso-
ciated with Egs. (46) and (47). For the zeroth-moment equa-
tion one can just sum both sides of the equations over i, for
the next moments one must first multiply by v;,, v;,0;5 and
so on. Note that the orders of the velocity moments are not
the orders of the e expansion. For each order in € we can
compute different moment equations. As we will show
shortly, for the purpose of reproducing the macroscopic
equations (32) we need up to the second-moment equation
for orders €” and €' and only up to the first-moment equation
for order €. The computations are carried out using the re-
lations of Appendix A. To order €, the zeroth moment does
not give any information; the first and second moments read

0=-1,", (49a)
plo)

0=-2yP%) (49b)

To order €' we find for the zeroth, first, and second order
moments:

AV 1 g0 =0, (50a)

DI04 DPO) = _ o) (500)

AP+ a0 =—29P). (50c)

And to order € we consider only the zeroth- and first-
moment equations:

amjm

a(Z)p(°)+a“)p 1)+(9<1>J<1> 2 0, (51a)
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At _ _
2) 4(0 1 1 1 1 1 1 1 1
A1+ 01D+ AP+ TA ) + 8= 29P)]

e (51b)

where we made use of Egs. (50a) and (50b) to derive the
first, and of Egs. (50b) and (50c) for the second equation.

C. Macroscopic equations

We can now add up the equations at different orders in €
and obtain expanded macroscopic equations for the zeroth
and first moments of the populations g;. The final step then is
to reconstruct the derivative operators from the expanded
ones.

For the zeroth moment, we construct €' X [Eq. (50a)]
+€¥X [Eq. (51a)] (order € does not add anything in this
case) and we get

iV + ed Dy + €9Pp 0 + E4VpV + 90
At 1y
- 6277(93)1;1) =0. (52)

For the first moment, we construct €’X [Eq. (49a)] +€'X
[Eq. (50b)] +€>X [Eq. (51b)] and we obtain

VIO + PO+ 2342050 + 2V S 1+ 250P)
Ar - _
+ €A ) + I 29P )]

L) (53)

In these equations both the moments of g; (corresponding
to the macroscopic variables) and the differential operators
are expanded up to order 2. We can straightforwardly recon-
struct the original quantities using relation (36) and the
analogous ones for the other variables. The spatial derivative
is reconstructed in the same spirit noting that J,X= eﬁfll)
X(X(0)+6X(1))=E(9$)X(O)+ 62(?(;))((1), where X is any of the
moments. In a similar fashion, for the time derivatives J,X
=e(9£1)X(0)+8&52)X(0)+620’?£1)X(1), where a term of order &
was omitted. Inserting Egs. (49a) and (49b) where necessary,
Egs. (52) and (53) can then be rewritten as

At
0+ Oud =0l pil). (54a)

(91‘]01+ aﬁpaﬁ= - 'Y(Ja_ pui) + yAtaB<PaB_ v%"péaﬁ

_ %(u{f/ﬁ + ug/a)> + %Ata,(Ja - put).
(54b)

Interestingly, we find that these equations differ from the
continuous equations by one additional term in the first and
by two terms in the second. All corrections are of order yAz.

We can gain more insight in these results by rewriting
them in a slightly different way. Let g{? be the solutions of
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i[g,]:O. From the explicit form (37) we see that the g;*
satisfy ja=ﬁa3=0, or equivalently

Jo=pul, = Jo, (55)

1
Pg= v%p5aﬁ+ 5(u§]3+ ugla) = PZ’ﬁ (56)

With these definitions we can rewrite Egs. (54) as

At
Gp+ = %aaua —J), (57a)
Ol o+ TP g == Y= J0) + YAIIH(P g — P%%)
At
+ %a,ua —J). (57b)

This form shows that for a given value of v, the closer to
equilibrium the system is, the closer the evolution of the
discrete system is to that of the continuous Fokker-Planck
equation.

Equations (57) are the final outcome of the Chapman-
Enskog expansion of the numerical scheme of Egs. (18).
Together with the stability results of Sec. III, they complete
the analysis of the proposed numerical method. Unfortu-
nately, they prove that the scheme does not actually solve the
continuous kinetic equation (3), because of the additional
terms in Egs. (57) with respect to Egs. (32). However, as just
illustrated, we know explicitly the error made. In the next
section we exploit this knowledge to build a corrected
scheme that is able to solve the continuous equation.

V. LATTICE FOKKER-PLANCK ALGORITHM

Having in mind the results of the previous section we
provide here a corrected numerical procedure to solve the
continuous Fokker-Planck kinetic equation (1).

The results of the Chapman-Enskog expansion suggest
that by properly redefining the hydrodynamic variables it is
possible to recover the correct continuous macroscopic equa-
tions. Let

At At
J= (1 - 7—)1,1 ey (58a)
2 2
Pog=(1 - yADP 5+ yAtPl. (58b)
Then Eqgs. (57) are rewritten as
Gip+ el =0, (59a)
Il o+ AP o5 ==Y, — puls), (59b)
where an effective friction
1 1 At
=7 (60)
y v 2

is introduced. At the level of the Chapman-Enskog expansion
the above equations correspond to the continuous Egs. (32).
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A similar approach was used in [15,38] by redefinition of
velocity in the presence of a forcing term. The quantities JZ
and P;B reduce to J, and P, in the limit yAr— 0. Further-
more, if J,=J%=pu’ we also have J, =J,=J% (and the same
for the stress tensor). With walls these equalities do not hold
in general. Indeed, the boundary conditions set JZ:O,
whereas J%/ is nonzero when a field is applied.

A computational algorithm to solve (1) can be divided
into two parts; the first initializes the simulation, and the
second is the dynamical evolution of the g;.

Initialization. If we perform a simulation using the “bare”
definition of the moments in the collision operator, but
sample the “corrected” moments p, JZ, and P;ﬁ, the latter
satisfy the continuous Fokker-Planck equation with second-
order accuracy [see Eq. (59)], but with a rescaled friction 7¥.
Suppose we want to simulate a system with a friction .
Then in Eq. (60) we identify ¥ with 7, solve for v, obtaining

Yo
'}/OAt ’
2

y= (61)

1+

and use this y in the simulation. The external velocity u”
must remain unaffected. So if one wants to apply a field aE’a,
one must use in the simulation a field ¢ such that a®/y
=a€ o/ Yo- The initial conditions are set on the starred vari-
ables, defined by (58) using vy, not 7.

Simulation loop. Given the set of g;(x;f) at time 7, the
gi(x;t+A¢) at time t+Ar are found, for each x, by the fol-
lowing steps: (1) compute the moments of f using (11), or
explicitly (12), (2) compute the Hermite coefficients of f, Eq.

(17), (3) compute the Hermite coefficients of é[f], Eq. (16),
(4) compute the right-hand side of (15), and (5) compute the
left-hand side of (15).

Then the procedure is repeated at each time step. At regu-
lar times we can sample the hydrodynamic observables of
interest corresponding to the moments of f. One has to take
care, however, to sample the starred variables, because these
are the ones that correctly reproduce the continuous equa-
tions.

An extensive literature is available for the implementation
of the lattice-Boltzmann method, where important issues
such as boundary conditions and large-scale code optimiza-
tion have been investigated in depth [6]. Most of the LB
techniques can be directly extended to the lattice Fokker-
Planck method. For further details the interested reader
should consult more specialized articles, such as the perfor-
mance studies of [39,40].

VI. NUMERICAL RESULTS
A. Numerical limits

Combining the results of Secs. III and IV, one finds that
the second-order scheme of the previous section allows one
to solve the FP equation for 0 <yAr<1, independently of
the external field af, and the smaller vAt, the closer the
lattice solution will be to the continuous one. Moreover,
since in the numerical scheme we use the friction y given by
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0.35 T T T
1
03f 0.07 — .
+
025 0.035 | 11
° 0.2 . 0 1 1 1 L -
& 0 1 2 3 4 5
"> oist ’ 1
01r %=03 O ]
Y% =06 X
0.05 | 1=09 ©
Bw=15 +
o . . .
0 s 10 15 20

t

FIG. 1. Time dependence of the flux of solute particles induced
by a constant external field. The system is described by the 1D FP
equation (1) with acceleration ag =0.1Ax/Af* and periodic bound-
ary conditions. Initially, the density is set homogeneously at p, and
the velocity field to zero. The symbols display the solution of the
equation using the LFP algorithm of Sec. V, while the full curves
represent the analytical solution Eq. (62). In the regime 0<y,Ar
<1 the algorithm reproduces the analytical solution perfectly, while
in the regime yyAt>1 (inset) it shows some discrepancies. Time ¢
is in units of Az and the vertical axis has units of Ax/Ar where Ax
is the lattice spacing. Friction v, is in units of 1/Az.

Eq. (61) instead of the real 7, the stability condition actually
corresponds to 0<7y,Ar<<2, so that it seems possible to
simulate systems with a time step longer than the reciprocal
friction. These theoretical findings need some numerical
backup. For this purpose we consider here two basic ex-
amples in D=1 for which analytical solutions are also avail-
able and we compare these solutions with the outcome of
simulations in the D1Q3 lattice [6]. We can then check the
validity of the proposed scheme and set constraints on the
range of parameters.

In the first example, we consider a system with periodic
boundary conditions, initially homogeneous at density py,
and with zero initial velocity. A constant homogeneous field
is applied resulting in an external acceleration ag. From the
solution of the continuous equations (32), the density does
not evolve, while the flux J is uniform and evolves as

T = (poag!yo)(1 = e). (62)

Direct simulation of the system without the y prescription of
Sec. V leads to an exponential solution with a wrong rate.
Including the prescription and sampling the starred moment
J*, one obtains the correct result, as shown in Fig. 1. How-
ever, for yAr=1 (yAr=2/3), we find that the numerical
results deviate from the continuous solution, so that, al-
though larger time steps could be used in principle it is nec-
essary in practice to constrain also the friction 7, to the range
0<yAr<l.

In the second example, we consider the same system, but
with bounce-back no-slip reflecting boundary conditions [6].
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FIG. 2. Diffusion coefficient Dy;,, of solutes as a function of the
constant external acceleration ag. The system is described by the
1D FP equation (1) with reflecting boundaries, and is initially set to
homogeneous density and vanishing velocity field. The density con-
verges to the barometric law Eq. (63) from which the simulation
estimate Dg;,, can be extracted as explained in the text. The continu-
ous lines correspond to Einstein’s relation. The deviation are caused
by the discretized solution and can be explained with the results of
the Chapman-Enskog expansion. The acceleration is in units
Ax/Ar* and the diffusion coefficients in units Ax>/At, where Ax is
the lattice spacing, and Az the time unit. Friction 7, is in units of
1/At.

A constant field is applied resulting in an external accelera-
tion af. Accumulation due to migration results in a concen-
tration gradient which is the source of a diffusive flux op-
posed to the applied field. From the balance of fluxes, we
find at equilibrium the barometric law for the density

ag
Peglx) % exp X (63)
T

where va=kBT/ m is the thermal velocity. The same result is
obtained from the direct solution of Egs. (32) on the assump-
tion that the tensor P, has already relaxed to its equilibrium
value P given by Eq. (56). Simulations without the 7 pre-
scription give an exponential profile, but the exponential
slope erroneously exhibits a dependence on the friction ¥,.
With the correct prescription the profile is still exponential,
and in order to check the slope, we first rewrite the fraction
in the right-hand side of (63) as ah/(yyD,) where, from
Einstein’s relation, DO:UZT/ Yo- From an exponential fit of our
data we can then derive a simulated diffusion coefficient D,
upon dividing ag /¥, by the measured slope. The numerical
results are reported in Fig. 2 compared to the continuous
value D,. Slight deviations can be observed, especially for
small v, These findings can be understood from the
Chapman-Enskog analysis. At steady state, Egs. (59) become

ol =0, (64)
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IgP =~ VI — pus). (65)

Using the assumption P;E=PZ‘%=U§p5&5+%(uf,lﬁ+ugla),
and the definition (58) of J,,, we arrive at the equations

el =0, (66)

V70 + 3 A YA GApp + uGopl ] = — VI, — pul)

(67)

for the redefined variables p,f;. Note that in this case y must
be identified with vy, above. Using the equilibrium result f;
=0, Eq. (67) easily yields an exponential solution for p(x) in
dimension 1, from which we can derive the simulated diffu-
sion coefficient Dy, as
2
vr At o,
Dy, = — - —(ay)”. 68

sim o 2 ’)/(2)( ()) ( )
The first term is Einstein’s relation and the second gives a
correction which is small for vanishing external fields. The
result (68) is in accordance with the values reported in Fig. 2
since the correction is larger for small y,. Equation (68) can
also be written as

At E\2
Dsim=D0|:1 - Y()z (Z_) j| (69)
T

where u® :ag !/ ¥y. Then another way of interpreting the cor-
rection is to say that our numerical scheme is increasingly
valid in the low Mach number regime, i.e., _uE must be small
compared to vy, which numerically is 1/y3=0.6 for D1Q3
and most common lattices.

Summarizing, we have found that the scheme works, but
the theoretical range of parameters must be restricted. The
physical friction y, which can be simulated must be such that
0<17y,Ar<1. A small v, is appropriate to obtain a discrete
evolution closer to the continuous one, but it must not be too
small compared to the external acceleration ag since other-
wise the low Mach number assumption would fail. As a final
remark, in the case of spatially dependent forces, this must
be true for all the points of the system, as we show in the
next section.

B. Further examples

In this section we consider two more complicated systems
where a BGK collision operator is also present. The systems
are described by the combined FP and BGK kinetic equation

af

= CIPLf] + CBOX(f] (70)

where as in Eq. (1) the total derivative is d/dt=d,+v,d,
+a§&va and the BGK collision operator is

M=) an

The function f¥=pw(v—u) is the Maxwell distribution. It
contains the density p(x,7) and the velocity u(x,7), which
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FIG. 3. Log-linear graphs of
the normalized density p(x)/pg as
function of the position x at six
different times for a 1D confined
system with friction ,=0.05/At¢
under the influence of an external
acceleration a5=0.01Ax/Ar>. The
system is simulated with a D1Q3
grid of 101 points, and is initially
prepared at a homogeneous den-

sity po (horizontal dotted line in

1 1 L I 1 I I 1

the figures) and no initial velocity.
When the external field is applied,
the system gradually evolves to
the barometric law Eq. (63) and
represented as a diagonal dotted
line in the figures. We show the
evolution for a pure FP collision
operator (At/7=0, full line) and
combined with a BGK operator
(At/7=1.9, dashed line). Time is
in units of Az and position in units

I 1 1

100 0 50 100 0

depend self-consistently on f via the definitions (12). The
discretization procedure of Sec. II can also be applied to the
combined equation (70). The resulting lattice BGK part is
well documented in the literature [24,25]. As for the lattice
FP equation (18), we also consider a second-order (K=2)
BGK scheme. Given the previous considerations on the nu-
merical limits of the algorithm, we empirically choose exter-
nal fields small enough not to break the low Mach number
assumption. The BGK operator Eq. (71) with a single relax-
ation time 7 accounts for collisions between particles, and
possibly hydrodynamic interactions. The stability analysis of
Sec. III can be carried over straightforwardly to this com-
bined case, giving the constraint 0 <<2yAf+At/ <2, where
At in our scheme is given by Eq. (61). Given a value of 7y,
in accordance to the previous subsection, we can then afford
a value of At/ 7 up to 2—2vy,Ar and slightly above.

As a first example, consider the one-dimensional (1D)
system of the previous subsection with reflecting boundaries
and simulations on the D1Q3 lattice with 101 lattice sites.
We focus here on the time-dependent approach to equilib-
rium. Such a condition corresponds to sedimentation caused
by gravity. We report the results in Fig. 3. Interestingly we
find that the presence of BGK collisions delays the start of
the relaxation, but then makes it converge faster once started.
The horizontal plateau of the density profiles at the early
stages is due to the finite propagation velocity of lattice
schemes, which are restricted in this case to only three pos-
sibilities. If one is interested in studying these effects a dif-
ferent lattice with a larger number of discrete velocities must
be employed.

In the second case, we consider the 2D system repre-
sented in Fig. 4, where we combine sedimentation and a
centrifugal force. We apply bounce-back reflecting bound-
aries on a D2Q9 lattice [6] of 21 X 41 points. We consider a
system with friction y,=0.1/A¢ under the influence of a

30 100 of Ax.

gravity g=0.01Ax/A* and a centrifugal force due to a rota-
tion of frequency w,=0.03/Az. Here At is the time unit and
Ax the lattice spacing. Also at the borders the low Mach
number assumption is satisfied. We report the results in Fig.
5. At short times the pure FP system departs earlier from the
homogeneous situation. However, at longer times the pres-
ence of BGK collisions accelerates the approach to equilib-
rium. Around =400 both systems are converged and the
final profiles are in agreement with the analytical Boltzmann
law

>

0

FIG. 4. The 2D confined system. Sedimentation under gravity is
combined with a centrifugal force. The external acceleration is a
combination of the constant g and the linear escape term w’x.
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FIG. 5. Contour plots of the
normalized density p(x,y)/p, at
three different times for a simula-
tion on a D2Q9 lattice of 21 X 41
sites with reflecting boundary con-
ditions. The system is initially ho-
mogeneous at density p, and the
velocity field is set to zero. We
show the evolution for a pure FP
collision operator (Ar/7=0, top

X figures) and combined with a
BGK operator (At/7=1.8, bottom

=4
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figures). Left panels show the evo-
lution at the early stage (r=10),
the middle ones at intermediate
stage (1=40), and the right panels
at steady state (r=400), where
both systems have converged to
the analytical Boltzmann law Eq.
(72). Time is in units of Az and
positions in units of the lattice
spacing Ax. The contour lines are
a spline interpolation.

I

X

w2

Peg(x,y) eXP[— (gy - ;xz)/lﬁ} (72)
which combines the parabolic behavior due to centrifugation
with the exponential one in the perpendicular direction due
to gravity. The proportionality constant in Eq. (72) can be
derived from the conservation of the total number of par-
ticles, i.e., [dx dy p(x,y,t=0)=[dx dy p,,(x,y). The explicit
time dependence at fixed points in space as well as a direct
comparison of the steady state with Eq. (72) is reported in
Fig. 6 for the pure FP system. The findings are in accordance
with the ones of the previous example. Also here, the flatness
of the density profile at early times is caused by the finite
number of velocities in the lattice scheme.

VII. CONCLUSION

In order to describe the time evolution of highly asym-
metric systems, involving widely different length and time
scales, like colloidal dispersions, we have extended the
lattice-Boltzmann formalism for the description of fluid flow
by replacing the standard BGK collision operator by a dis-
cretized Fokker-Planck operator to account for the dissipa-
tive coupling of large solutes to a continuum solvent, without
resolving the molecular scale of the latter. Using an expan-

0 100 200 300 400

FIG. 6. Time evolution of the normalized density p(x,y)/p, for
the same system as in Fig. 5 in the case of a pure FP collision
operator. The height of the box is L,=40 lattice units and three
different points are shown: x=0, y=0 (solid line), x=0, y=L,/2
(dotted line), x=0, y=L, (dashed line). In the inset the steady state
at t=400 (open circles) is compared with the analytical Boltzmann
law Eq. (72) and solid lines in the plot. The top points are at y=0,
the middle ones at y=L,/2, and the bottom ones at y=L,. Time is in
units of At and posmons in units of the lattice spacing Ax
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sion of the continuous one-particle distribution function in a
truncated Gauss-Hermite basis, as well as standard quadra-
tures with appropriately chosen weights, we were able to
reduce the initial continuous Fokker-Planck equation to a
simple matrix form. The stability of the discrete time evolu-
tion is determined by the diagonal elements of the triangular
collision matrix, which are proportional to the friction coef-
ficient y. A standard Chapman-Enskog expansion leads back
to the usual conservation equations derived from the continu-
ous FP equation in the limit A7— 0. For finite time steps Az,
the correct continuum equations are recovered by properly
redefining the hydrodynamic variables, i.e., by introducing
the starred current and stress tensor of Egs. (58). This leads
then to the lattice Fokker-Planck algorithm of Sec. V.

This algorithm was first tested against known analytical
results for the time evolution of simple model systems. The
numerical efficiency was tested in the nontrivial case of col-
loid sedimentation in the presence of gravity and a centrifu-
gal force. We intend to use the LFP algorithm to investigate
ion translocation through heterogeneous nanopores, ion
transport in swollen clays, and various applications in dissi-
pative colloid dynamics. These applications will benefit from
the extensive experience gained over the years with the re-
lated LB method.

Due to the well-known mapping between the Fokker-
Planck and the imaginary time Schrodinger equation [17],
the present LFP scheme is also applicable to the solution of
ground-state quantum problems.

The present LFP scheme has a number of limitations. First
of all, the Fokker-Planck equation itself is never fully rigor-
ous, since a separation of time scales is never complete, as
had already been recognized by Lorentz [41] so that non-
Markovian corrections are always present [42]. Second, to
account for collisions between particles, a BGK term may be
added to the discrete FP operator, as stressed several times in
this paper, and illustrated in two of the numerical examples
(see Figs. 3 and 5). However, it is not clear how such a term
could account for the long-range hydrodynamic interactions
between Brownian particles induced by the solvent backflow.
A third limitation emerges from the stability analysis, which
restricts the range of possible values of the inverse time
scales y (associated with the FP operator) and 1/7 (charac-
terizing the BGK operator). Clearly there is a need for an
algorithm valid to higher order in Az. Work along these lines
is in progress.

The lattice Fokker-Planck equation belongs to the family
of mesoscopic particle schemes for complex flows. It is
hence appropriate to outline the differences with some of the
already existing methods.

Multicomponent lattice-Boltzmann for mixtures [21-23]
is the closest to the LFP method. For an application see also
[11]. Two coupled kinetic equations for solute and solvent
can be solved by lattice BGK algorithms which take as input
the relaxation times 7y, and 7, A combined LFP-BGK
method uses instead 7,,;,,, and the friction coefficient vy, em-
ploying a one-component description and treating the solvent
implicitly. This approach becomes more efficient when the
relaxation times of solute and solvent are highly asymmetric
(separation of time scales) as in the case of colloidal suspen-
sions. Naturally, multicomponent schemes can also be ex-
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tended to the LFP method, where more than one solute is
present in the solvent.

The method of Capuani ef al. [12] is a model to simulate
general nonideal fluid mixtures at the hydrodynamic level.
Convection-diffusion equations for the densities and currents
of each species are coupled to the Navier-Stokes equation for
the whole fluid. When one of the species is a solvent an
approximation can be made, and the solvent diffusion equa-
tion is neglected. So for a system of v species plus solvent,
v+1 equations must be solved. The lattice-Boltzmann
method enters here as an efficient way to solve the hydrody-
namic equation. In contrast, a generalized multicomponent
LFP method for v species would require v equations, be-
cause the solvent would enter in each of them as a Fokker-
Planck collision term. Being at the kinetic level, the LFP
description can in principle compute the moments of the dis-
tribution function to any desired order, and this is not limited
to the lowest-order hydrodynamic moments, i.e., density and
current. The FP term is also supposed to take into account
inelastic collisions of solute particles with confining sur-
faces. In [12] the nonideal part of the model is included
self-consistently via an additional closure equation, e.g., the
Poisson equation in the case of polyelectrolytes. This can
also be included in our model through a self-consistent ex-
ternal field. Such an implementation is currently under inves-
tigation.

Particulate methods for solutions differ more substantially
from the LFP approach. In dissipative particle dynamics [43]
coarse-grained solute particles undergo a combination of
conservative, dissipative and random forces. As in the LFP
method the solvent is treated implicitly, but at variance with
the LFP approach the time evolution of distribution functions
and the hydrodynamic fields must be computed from aver-
ages over many realizations. At the kinetic level of the LFP
method, stochastic components are not present and direct
access to the moments of the distribution function is avail-
able. The same problem is present in stochastic rotation dy-
namics [44,45] which also adds solvent particles, even
though the solvent-solvent interaction is treated in a faster
stochastic way. Particulate methods where the solvent is
treated as a hydrodynamic continuum also exist. The hydro-
dynamics is then treated by Stokesian dynamics or the
lattice-Boltzmann method [15]. However, proper handling of
this kind of solvent is not trivial because of the particles
being represented as moving boundaries and the presence of
lubrication forces. The LB solvent can also be formulated to
include thermal fluctuations [46]. It will be interesting to
explore whether the lattice Fokker-Planck equation repre-
sents an alternative, possibly more efficient, way of incorpo-
rating statistical fluctuations within the framework of an on-
grid and deterministic lattice kinetic scheme.

The more detailed a description one chooses, the more
expensive the simulations become. In systems with a separa-
tion of time scales it is known that a coarse-grained model
for the faster and less relevant species (the solvent) must be
adopted, and one must simulate at the time scale of the me-
soscopic species (the solute). We propose here to treat the
solvent implicitly as a source of friction and thermal noise
for a solute described at the kinetic level of the distribution
function. The LFP method is the simplest of the above men-
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tioned methods, but easier to implement, and faster. We plan
to report on such issues in future publications.
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APPENDIX A: D-DIMENSIONAL HERMITE
POLYNOMIALS

A complete set of orthonormal polynomials in D variables
can be obtained by products of Hermite polynomials in a
single variable. A detailed presentation can be found in the
work of Grad [47]. Here we sketch the basic notions and
concentrate on the relations which are useful in the present
work.

Consider the space of real functions f(x) of D variables
for which the integral [dv w(v)f(v)? exists, where w(V) is
the Gaussian weight function defined by Eq. (5). A
D-dimensional Hermite polynomial of order / is a tensor
H(Df)(x) of rank /. Each component is a polynomial function
in this space. These polynomials form an orthogonal set in
the sense

f av o(v) l+mH(l)(v)H('”)(v) 5,,,,51 (A1)

where the quantity é{az is zero unless the subscripts «

=a,...,q are a permutation of B=PBi,.... B Itis a sum of
[! terms, each one being a product of [ Kronecker &’'s with
the subscripts given by all the possible permutations of indi-
ces from the two sets a and B. The first few polynomials
read '

HO(v) =1, (A2)
HY V) = v, (A3)
HGHV) = 00— 07 0up, (A4)

H®)

Hop (V) =000, — vT(v Oy +V0ay+0,0,p), (AS)

am&(v) VUl 5= vT(vavﬁﬁ 5+ Ul 05+ U ol 505,
+U5v75a5+ UB055,”,+ vagtsaﬁ) + UT((saB i)
+ 6&76B5+ 5“‘56B7)' (A6)

Hermite polynomials form a complete set and the expansion

'The Hermite polynomials 'HE)?(V) defined here can be considered
as a dimensional-explicit version of the polynomials ﬁg)(v) defined

by Grad [47]. The relation Hg)(v) =UIT7?[(QI)(V /vy) exists between the
two, where vy has the dimension of the velocity v.
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(4) is valid, where the coefficients are given by Eq. (6). In
D=1 the polynomials defined here reduce to the so-called
Hermite-Chebyshev polynomials, which differ in normaliza-
tion from the usual Hermite polynomials [48]. The derivative
of Hermite polynomials satisfies two important properties.
The first relates an Hermite polynomial of degree / to one of
degree -1,

&UBHS)(V) = 5Ba1Hg;.).,a,(V) +o t 550(17{(05;.1‘)”0[ (v).

_ (A7)

The second is the recurrence relation

a0 = SToHOW) - HED W] (AB)
B e V7 a @
where Ba denotes the /+1 indices Bay,...,q;.

Making use of the quadratures Egs. (10) in Sec. II, inte-
grals of products of Hermite polynomials and a Gaussian can
be rewritten as discrete sums on lattice vectors. The maxi-
mum order of the polynomial involved is dictated by the
order of the quadratures. In the practical case of interest here,
a quadrature of order 4 is used in the model of Eq. (18),
where K=2. The orthonormality relations Eq. (A1) become
then the discrete sum rules

Ewizl’

(A9)

> wiviavil;:v%&ag, (A10)

i

E Wi(viaviB - v%aaﬁ)(viyviﬁ_ U%—éyl;) = v;(5a75ﬂﬁ+ 5(155[37),

(A11)

and the remaining combinations, such as X;wv;,, etc., are
simply 0. From the last Eq. (All) we can derive the
fourth-order tensor formula

4
2 WiliqUigliyVis= UT(5aB575+ CayOps+ 5a55ﬁy)-
i

(A12)

APPENDIX B: EIGENFUNCTIONS OF THE
D-DIMENSIONAL FOKKER-PLANCK OPERATOR

The D-dimensional Hermite polynomials defined in the
previous section can be used to construct eigenfunctions of

the Fokker-Planck operator C*?[f] of Eq. (1) in the form of
products w(V)H(Df)(V).

Using the fact that for a Gaussian
Ua
— (V) (B1)

d, w(v)=-

we can write for the action of C*F on these functions
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CMo(WHG W] = v, (05 + 070, N0V H (V)] = yo(v)

X(= 0o, +070,,0, JH V). (B2)
Because of relation (A8), we can write
avﬁavﬁH” (v) = DH([)(V) + vﬁ& H(l)(v) (”U(V).

(B3)

Using then property (A7) it is easy to prove that
<’+1>(v) ~ 1+ DYHL(v). (B4)

Bringing all the above relations together we get
CH (V)M ()] = = Yo()H(Y) (BS)

which is the eigenvalue property we wanted to prove. From
this it is immediate to prove relation (16a) using (25) and the
orthonormality of the polynomials.

We can use the above results to prove also relation (16b).
From Egs. (B1) and (A8) we get
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E ol HY (]2 af, Jo MO ()] = 3 a0,

Ur
(B6)
from which, using the expansion (4),
J dv 1y (V) Cf]
* F(l)
D 22 dv H(m)(V)Cm[w(V H(l)(V)]
=0 vl
oy
=3 S8 | av HP WM V)
=0 V7l U7
1
[ ( —-1) E (m)
(m — ])V a :36(7 Ba
<m D oo 4 o E plm=1)
F = Ym + + aymF')/]v <o Ym=1 (B7)

where we used Eq. (A1) and the fact that F*"~V is invariant
under permutations of its m—1 indices.
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